Objectives

* Convenience: An OS makes a computer more convenient
to use.

* Efficiency: An OS allows the computer system resources to
be used in an efficient manner.

* Ability to evolve: An OS should be constructed in such a
way as to permit the effective development, testing, and
introduction of new system functions without interfering
with service.




WHAT IS AN OPERATING SYSTEM ?

+ Collection of software that manages the computer hardware resources.
* Aninterface between user and computer hardware.
* Without OS computer becomes useless.

Nt 3

Application

i ’ |
I {
i |
-

Operating System

.

Hardware




»New: the new process is created

»Running: Instructions are executed

» Waiting: the process is waiting for some event to occur.

» Ready: the process is waiting to be assigned to a processor
» Terminated: the process has finished execution.

Process states

: ,T,e'rmlnaf i

ARSI



hroughout its
ess terminates.

PROCESS CONTROLBLOCK

Process ID

State

Pointer

Priority

Program counter

CPU registers

1/O information

Accounting information

Etcl L1 4]




Yes, a multithreaded solution using

multiple user-level threads can achieve!
better performance on a multiprocessog
system than on aisingle-processory

system:s

On'a'single-processor system, only‘one
thread can be executing at any.given tim
so multithreading may. not necessarilyra
provide a performance boost. However;

a multiprocessor system with multiple

CPUs or. cores, multiple threads can




Diial mode operation

* For proper execution of the OS we must be able to distinguish between the
execution of OS code and user defined code.

Dual-mode operation allows OS to protect itself and other system components

User mode and kernel mode (or supervisor mode, system mode, or privileged
mode).

A bit called Mode bit provided by hardware

Provicélejs ability to distinguish when system is running user code (1) or kernel
code (0

* Some instructions designated as privileged, only executable in kernel mode
» System call changes mode to kernel, return from call resets it to user

* The dual mode of operation provides us with the means for protecting the OS
from users and users from one another.




Benefits of Multithreads

Enhanced throughput of the system: When the process is split into many
threads, and each thread is treated as a job, the number of jobs done in the unit
time increases. That is why the throughput of the system also increases.

Effective Utilization of Multiprocessor system: When you have more than one
thread in one process, you can schedule more than one thread in more than one
Processor.

Faster context switch: The context switching period between threads is less than
¥he ﬂroggﬁ context switching. The process context switch means more overhead
or the :

Responsiveness: When the process is split into several threads, and when a
thre.a_lt::]jI completes its execution, that process can be responded to as soon as
possible.

Communication: Multiple-thread communication is simple because the threads
share the same address space, while in process, we adopt just a few exclusive
communication strategies for communication between two processes.

Resource sharing: Resources can be shared between all threads within a process
such as code, data, and files. Note: The stack and register cannot be share
between threads. There is a stack and register for each thread.



Need of Thread:

* It takes less time to create a new thread in an existing process than to
create a new process.

* Threads can share the common data, they do not need to use Inter-
Process communication.

* Context switching is faster when working with threads.
* It takes less time to terminate a thread than a process.



System Boot

* When power initialized on system, execution starts
at a fixed memory location

* Firmware ROM used to hold initial boot code

* Operating system must be made available to
hardware so hardware can start it

* Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and
starts it

* Sometimes two-steﬁoprocess where boot block at fixed
location loaded by ROM code, which loads bootstrap
loader from disk

« Common bootstrap loader, GRUB, allows selection
of kernel from multiple disks, versions, kernel
options

* Kernel loads and systemis then running



Advantages:

* Multicore and FPGA processing helps to increase the performance of an embedded
system.

* Also helps to achieve scalability, so the system can take advantage of increasing numbers
of cores and FPGA processing power over time.

* Concurrent systems that we create using multicore programming have multiple tasks
executing in parallel. This is known as concurrent execution. When multiple parallel tasks
are executed by a processor, it is known as multitasking.




' CPU utilization: the CPU should kept busy as possible.
' Throughput: it is the number of processes completed per unit time.

"Turnaround time: the interval from the time of submission of a
process to the time of completion is the turn around time



Sections of a Program in OS

Following are the four essential sections of a program:
1. Entry Section: This decides the entry of any process.

2. Critical Section: This allows a process to enter and modify
the shared variable.

3. Exit Section: This allows the process makes sure that the
process is removed through this section once it's done
executing.

4. Remainder Section: Parts of the Code, not present in the
above three sections are collectively called Remainder
Section.

do {

entry section

critical section

exil section

remainder section

} while (TRUE);




Lock Variable

* This is the simplest synchronization mechanism. This is a Software Mechanism
implemented in User mode. This is a busy waiting solution which can be used for
more than two processes.

* In this mechanism, a Lock variable lock is used. Two values of lock can be
possible, either 0 or 1. Lock value 0 means that the critical section is vacant while
the lock value 1 means that it is occupied.

* A process which wants to get into the critical section first checks the value of the
lock variable. If it is O then it sets the value of lock as 1 and enters into the critical
section, otherwise it waits.

Entry Section
While (Lock! = 0);
Lock = 1;

// Critical Section
Exit Section

Lock =0:




A Semaphore is an integer variable, which can be accessed only
through two atomic operations for process synchronization

» wait() operation (P- to test)-The wait operation decrements the
value of its argument S, if it is positive. If S is negative or zero,
then no operation is performed.

» signal() operation (V- to increment)-The signal operation
increments the value of its argument S.



Rules/conditions for Critical Section

* There are three rules that need to be enforced in the critical section. They are:

* Mutual Exclusion- Mutual exclusion implies that only one process can be inside
the critical section at any time. If any other processes require the critical section,
they must wait until it is free.

* Progress- Progress means that if a process is not using the critical section, then it
should not stop any other process from accessing it. In other words, any process
can enter a critical section if it is free.

* Bounded Waiting- Bounded waiting means that each process must have a limited
waiting time. It should not wait endlessly to access the critical section.



bl B A R - B

* If the necessary condition of deadlock is in place it is still possible to avoid
feedback by allocating resources carefully.

* A deadlock avoidance algorithm dynamically examines the resources allocation
state to ensure that a circular wait condition case never exists.

* Where the resources allocation state is defined by the available and allocated
resources and the maximum demand of the process.



1) Resource allocation graph

* In resource allocation graph for deadlock avoidance we introduce a third kind of edge called the claim ed
which is a dotted line from a process towards a resource meaning that the resource can be requested by tt
process in future.

= Whenever a process requests for a resource the claim edge is changed to request edge and if the resour
can be granted the request edge is changed to assignment edge. After this change look for a cycle in th
graph. If no cycle exists, then the system is in safe state and the deadlock will not occur else the system is
unsafe state and deadlock may or may not occur.

Important to remember

= Applicable if each resource has only one instance.

Claim edge : ——-> from process to resource
= Process may request resource in future

When process requests resource change claim edge to request edge.

Request edge is converted into assignment edge only if the conversion does not lead to the formation of
cycle in the graph.

Example \

* Consider the scenario in Figure 1. P1 is holding R2 and P2 is v

requesting R2. P1 and P2 can request for R1 in the future. R Rs
* P2 request to R1 should not be granted because granting the

request will lead to the formation of cycle in the graph.

P2 request for R1, since R1 is free it can be allocated to P1.

The resulting graph will be as shown in Figure 2. This results
in cycle formation in the resource-allocation graph. Hence,
the state is an unsafe state and this request can not be

granted. @\

Ri Rz

2) Bankers’s algorithm

* The resource allocation graph algorithms not applicable to the system with multiple
instances of the type of each resource. So for this system Banker’s algorithm is used.

* Here whenever a process enters into the system it must declare maximum demand



Deadlock prevention:

* This ensures that the system never enters the deadlock state.

* Deadlock prevention is a set of methods for ensuring that at least one of tt
necessary cenditions cannot hold.

* By ensuring that at least one of the conditions cannot hold, we can prevent tt
occurrence of a deadlock.

1./Denying mutual exclusion:

* Mutual exclusions conditions must hold for non-sharable resources.

* Printer cannot be shared simultaneously shared by prevent processes.
» Sharable resources- example read-only files.

* If several processes attempt to open a read-only file at the same time, they cz
be granted simultaneously access to the file.

* A process never needs to wait for a sharable resources.

2. Denying Hold and wait:

* Whenever a process request a resource, it does not hold any other resource.

* One technique that can be used requires each process to request and t
allocated all its resources before it begins execution.

* Another technique is before it can request any additional resources, it mu
release all the resources that it is currently allocated.

* These technique has two main disadvantages:

1. Resource utilization may be low, since many of the resources may be allocate
but unused for a long time.

2. We must request all the resources at the beginning for both protocol
Starvation is possible.

3. Denying No Preemption:

* If a process is holding some resources and requests another resource that cann
be immediately allocated to it. (that is the process must wait), then all resourct
currently being held are pre-empted.

* These resources are implicitly released.
* The process will be restarted only when it can regain its old resources.
4. Denying Circular wait:

* Impose a total ordering of all resources types and allow each process to reque
for resources in an increasing order of enumeration.

Let R={R1, R2...Rn} be the set of resource types.

* Assign to each resource type a unique integer number.

If the set of resource types R includes tape drives, disk drives and printers.
F(tapedrive)=1, F{diskdrive)=5, F(printer)=12.

* Each process can request resources only in an increasing order of enumeration.



Race Condition in OS

* When more than one processes execute the same code or access the same
memory/shared variable, it is possible that the output or value of the shared
variable is wrong.

* In this condition, all processes race ahead in order to prove that their output is
correct. This situation is known as race condition.

* When multiple processes access and manipulate the same data concurrently the
outcome depends on the order in which these processes accessed the shared
data. When the output of multiple thread execution differs according to the order
in which the threads execute, a race condition occurs.

* We can avoid it if we treat the critical section as an atomic instruction and
maintain proper thread synchronization using locks or atomic variables.



Parameter

LOGICAL ADDRESS

PHYSICAL ADDRESS

Basic

Address
Space

Visibility

Generation

Access

Editable

Also called

generated by CPU
Logical Address Space is set of all
logical addresses generated by CPU in

referencetoa program.

User can view the logical address of a

program.
generated by the CPU

The user can use the logical address to

access the physical address.
Logical address can be change.

virtual address.

location in a memory unit
Physical Address is set of all physical
addresses mapped to the corresponding

logical addresses.

User can never view physical address of

program.

Computed by MMU

The user can indirectly access physical

address but not directly.

Physical address will not change.

real address.



Load Time Address Binding
* It will be done after loading the program into memory.

* This type of address binding will be done by the OS memory manager i.e loader



